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Abstract

This paper presents a decentralized control design method for large complex flexible

structures by using the idea of joint decoupling. The derivation is based on a coupled

substructure state-space model, which is obtained from enforcing conditions of interface

compatibility and equilibrium to the substructure state-space models. It is shown that by

restricting the control law to be localized state feedback and by setting the joint actuator

input commands to decouple joint degrees-of-freedom from interior degrees-of-freedom,

the global structure control design problem can be decomposed into several substructure

control design problems. The substructure control gains and substructure observers are

designed based on modified substructure state-space models. The controllers produced

by the proposed method can operate successfully at the individual substructure level as

well as at the global structure level. Therefore, not only control design but also control

implementation is decentralized. Stability and performance requirement of the closed-

loop system call be achieved by using any existing state feedback control design method.

A two-component mass-spring-damper system and a three-truss structure are used as

examples to demonstrate the proposed method.

I. Introduction

Control of flexible structures has gained much research interest since the space shut-

tle transportation system became reality and construction of large structures in space is

no longer a dream. Many structural control methods and algorithms have been proposed

in the past decade. However, the application of decentralized control to flexible structures
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has not beenpursuedextensively. A large space structure must be built incrementally

with components shipped into space sequentially during several shuttle missions. Also,

for operational purposes, space structures may need to be connected and disconnected

routinely in space. Therefore, it is desirable to have controllers that can function well

on each individual structure and also on the interconnected structures. Decentralized

controllers designed based on structure components will fit to meet such purpose.

Most of existing decentralized control designed methods were developed for ap-

plication to electrical engineering systems or economics systems, rather than to flexible

structural dynamics systems (see, for example, Refs. [1-3]). In general, structural dy-

namics systems are strongly coupled (in physical coordinates), which makes it difficult to

design and to implement decentralized control. Existing decentralized control methods

for flexible structures either adopt or extend the concepts and methodologies developed

for other type of systems. For instance, the method in Ref. [4] extends the concept of

decentralized fixed modes of Ref. [1] to structural control problem. The decentralization

of the control problem is based on modes instead of physical components of the structure.

The controlled component synthesis (CCS) method of Ref. [5] adopts the concept of over-

lapping decomposition in Ref. [3] to design controllers for physical structural components.

Because overlapping decomposition requires information about adjacent components, the

CCS method is not a strict decentralized approach. The substructure controller synthe-

sis (SCS) method in Ref. [6] is a decentralized control design method which uses natural

decomposition of structural dynamics systems. Both CCS and SCS methods employ

interface compatibility conditions to assemble the substructure controllers into a global

controller for the assembled structure. However, because interface equilibrium conditions

are not considered in the assembly process, the global controller does not guarantee sta-

bility of the closed-loop system, which is a major disadvantage of both CCS and SCS

methods.

This paper presents a decentralized control design method based on the idea of

joint decoupling. The method is developed specifically for decentralized control of large

complex flexible structures. The structure to be controlled is first decomposed into sev-

eral substructures, which can be physical components that are to be connected together

to form the assembled structure, or they can simply be the result of applying "imagi-

nary" cuts to the structure. It is assumed that there are collocated actuators and sensors

at every interface (or joint) degree-of-freedom. Then, by enforcing conditions of com-

patibility and equilibrium to the joint inputs and joint outputs, state-space models of

substructures are combined together to form a coupled substructure state space model.



Then, based on the coupled substructure state-space model it is shown that control de-

sign can be decentralized by restricting the control gain matrix and the observer gain

matrix to have a specific form. The whole design concept can be described as follows.

The control commands for the interior actuators (i.e., actuators that are not located at

the joints) of each substructure are chosen to be localized state feedback. Then, the

joint actuator commands are set to cancel out all the forces acting on the joint degrees-

of-freedom which are induced by interior actuator inputs and by vibration of interior

degrees-of-freedom. The result is that the joint degrees-of-freedom are decoupled from

the interior degrees-of-freedom and, therefore, there is no interaction force transmitted

through the joints from one substructure to another substructure when the substructures

are connected together. The controller designed by using the idea of joint decoupling is

called the Joint Decoupling Controller.

The proposed Joint Decoupling Controller has several advantages. First, the de-

sign procedure is completely decentralized. It requires no information about the other

substructures in order to do control design for one substructure. Second, the control

implementation is also decentralized. The controllers can operate successfully at the in-

dividual substructure level before assembly and also at the global structure level after

assembly. This feature makes the proposed method extremely useful for active control of

space structures that need to be connected and disconnected on a routine basis for op-

erational purposes. No controller redesign or controller shut-off-and-turn-on is necessary

before, during, or after the connection process. Third, the proposed method divides a

large-scale control problem into several small-scale subproblems, and, hence, computa-

tionally it is more efficient than a centralized control design approach. The control law

can be determined by using any state feedback control design method, e.g., the LQR

method or pole placement method.

This paper is organized as follows. The coupled substructure state-space model is

derived in Section II. The design procedure for a decentralized control gain matrix and the

design procedure for a decentralized observer system are presented in Sections III and IV,

respectively. Also included in Section IV is a summary of design steps for the proposed

Joint Decoupling Controller. A six degrees-of-freedom mass-spring-damper system and

a three-truss structure are used in Section V as examples to demonstrate the proposed

method.
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II. The Coupled Substructure State-Space Model

In this section, we will derive the coupled substructure state-space model for flexible

structures that are composed of many substructures. Without loss of generality, we will

consider the two-component structure shown in Fig. 1. Figure l(a) shows the assembled

yi a ! I 1
u. y# u#

(a)

1 1 1 i
Ya ua y# u#

#I u: If

(b)

Figure 1: A two-component structure.

structure as an entity, which also will be referred to as the global structure. Figure l(b)

shows the decoupled two substructures a and _. These two substructures can be physical

components that are to be connected together to form the structure, or they can be the

result of applying an "imaginary cut" to the structure. Locations of actuators and sensors

are denoted by u and y, which are divided into two groups. Those actuators and sensors

located at the joint (or interface, where the substructures are to be connected together)

are denoted with a superscript J. Those actuators and sensors located at unconnected

points (or located at "interior" points of each substructure) are denoted with a superscript

I. In order to describe interface compatibility and equilibrium conditions in terms of

input and output vectors, it is assumed that there are a pair of collocated actuator and

sensor at every joint degree-of-freedom. Also, the output measurements at the joint

coordinates are assumed to be accelerations for a special purpose to be discussed later.
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Let the state-spacemodels of a-substructure and E-substructure be described,

respectively, by

and

{/}k:=Aox:+[B: BJ_ ] uos
Uet

VJ C_J D J' D JJ u_

(1)

1,fkt3
k

D_' o_-' (2)

These two state-space models can be derived from finite-element modeling of the two

substructures. For instance, let the finite-element model of a-substructure be described

by

{..,} {.,} {,}[, ]{i}w a wet w_ P_ 0 uet

M_ ..j +Z_ .j +K_ a = 0 I a
Wc_ Wet Wet Uet

y_ 0 I wet"J

(3)

i and awhere wet wet are the interior and the joint displacement coordinates, respectively.

Met, Zet, and K_ are the substructure mass, damping, and stiffness matrices. P_ is

the interior actuator distribution matrices. HI is the interior accelerometer distribution

matrices. (For more general cases, the interior outputs may also include displacements

and velocities.) The identity matrix I in the input and output matrices indicates that

there are actuators and sensors collocated at every joint degrees-of-freedom. In first-order

state-space form, the system in Eq. (3) can be represented by

[ 0 , ]xet= -M;tKet -M_'Zo xet +

0 0

{'}Uet

U J
et

[ ] [-M[,X Zet ] xet + H_ 0 M:x P_ uet
J

0 I 0 uo

(4)

where the state vector is defined by

{'}Wet

d
Wet

Xet "-" "I
Wet

.J
Wet

5



For convenience of derivation in this paper, the substructure state vector is rearranged

as

{']{}
W a

• I I
W a X¢,

Xa -- j ---- j
W a T, a

.J
W a

(5)

and the system matrices are rearranged accordingly. Other than finite-element model-

ing, the substructure state-space models also can be realized directly from substructure

experimental data by using system identification tools.

The two state-space models in Eqs. (1) and (2) describe the dynamics of the two

substructures when they are completely decoupled. When the two substructures are

joined together to form the global structure, the input and output vectors at the interface

of the two substructures are no longer independent. They must satisfy two conditions:

compatibility and equilibrium. The output vectors at the interface are constrained by

the compatibility equation:

y._=_ = y' (6)

which says that the physical motion of the two substructure at the interface must be the

same. The input vectors at the interface are related by the equilibrium equation:

U" d=u_+ u_ (7)

which says that the sum of the internal forces at the interface must be equal to the

external force applied there. The two substructure state-space models can be coupled by

enforcing interface compatibility and equilibrium conditions. First, rewrite the bottom

part of the output equations in Eqs. (1) and (2) as

_ (s)-- -- -- /-)c_ U_)

U_--" (D_J) -1 (y_- C_X_ -- 1.2,8""JIu13)I'

Adding the above two equations and applying the equilibrium and compatibility condi-

tions in Eq. (7), we obtain

= (vo) (coco+,_,oo" "'-'" °""- "'"
The above equation can be rewritten as

-1 j JI I
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J
where S = (D_ J + D_ J) and u J is replaced by u_ + u_. Finally, by substituting Eq. (9)

into Eqs. (8) and then substituting the results into the two substructure state-space

models in Eqs. (1) and (2), we obtain the following "combined" state-space model for

the two substructures:

[A. oJ , J]()
_7B /:/J _'- 1 t'_J /_J K'-I PJ,-,_ _, ,.._ A_ - x_

+

+

{:;}
(10)

In short notation, Eq. (10) will be represented by

-_ +/ fi (11)

where fi,,/_, C, D, _, fi, and _ are clearly defined.

The state-space model in Eq. (10) will be referred to as the coupled substructure

state-space model. It describes the dynamics of the two substructures in Fig. l(b) with

compatibility and equilibrium conditions satisfied at the interface. Therefore, it can be

considered as a state-space representation of the global structure in Fig. l(a). In fact,

there is a relationship between the coupled substructure state-space model and the state-

space model of the global structure. Let the state-space model of the global structure in

Fig. l(a) be described by
_c = Ax + Bu

y = Cx + Du (12)



with the state, input, and output vectors defined by

{} {) {)X a Ua yl a

X = X J , U = u J , y = yd (13)

We see that 5: and x are related by a linear transformation

Xot

J
Xa

-- xl --

I 0

0 I

00

0 I

0

0 xa
X J

I

o

or _ = Tx (14)

where T will be referred to as the state coupling matrix. Also, fi and u are related by

U a I000

0II0

000I }U a

J
U a

or u = :/'1 fi (1.5)

and y are related by

y_ 0 0 I

or # = T_y (16)

T1 and T2 will be referred to as the input coupling matrix and the output coupling matrix,

respectively. It should be noted that in general T1 # T/, although it appears to be,

because the number of interior sensors and the number of interior actuators can be

different. By using the state, input, and output coupling matrices, it can be shown that

the global structure state-space model and the coupled substructure state-space model

are related by

TA=,4T , TBTI=[_ , T2C=CT , T2DTI=/) (17)

In the preceding derivation, we have assumed that both D_ J and D_ J are invertible.

This is true when the outputs at the interface are accelerations. As can be seen from
-J

Eqs. (3) and (4), when the interface output is y_ = w, we get

E0,] :1[011



which is invertible because M_ is positive definite. (For most structures, the mass ma-

trix is positive definite.) Since accelerometers are the most frequently used sensors in

practical situations, this assumption is not a serious restriction. Even when the sensing

devices used at the interface are displacement sensors or velocity sensors instead of ac-

celerometers, it is still possible to perform coupling of structure state-space models by

making modifications to the substructure state-space models.

In the following sections, a method for designing decentralized controllers for the

global structure will be derived. It will be shown that the controller gains for joint

inputs and the observer gains for joint outputs can be chosen such that the coupling

between substructures is eliminated. By doing so, the global structure control problem

is decomposed into two substructure control problems.

III. The Design of Decentralized Controller Gain Matrix

According to the separation principle, controller gain matrix and observer gain

matrix can be designed separately. In this section, we will derive the procedure for

designing decentralized (or localized) state feedback gain matrix for the global structure.

As discussed previously, the coupled substructure state-space model in Eq. (10) is a

state-space representation of the global structure. Therefore, the whole derivation will

be based on the coupled substructure state-space model.

The key idea behind the decentralization method presented here is to use the joint

actuators to eliminate the interaction between substructures. Let the joint actuator

commands be chosen as

d

Uo= +D2 081
ndl I'_

After algebraic manipulations, substitution of the above into the state equation in Eq. (10)

yields

{/[ ]{}[ ]{'}&o = A.m 0 x_ B_., 0 u. (19)
&Z 0 Aa_ xz + 0 B_,,, u_

where

A,_,,,, = A,_- B J (D_J) -' C_

Aa,.,, = Aa- B_ (D_J)-' Cd ,

_,,.. = B. - Bo, D,_ D,_

B_r n = B_ -- B# (D_J) -I D_'

(20)
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Subscript m is used to denote that the above matrices are modified substructure matrices.

Note that the system in Eq. (19) is decoupled. This decoupling of the closed-loop state

equation suggests a decentralized control design procedure, which can be described as

follows. First, restrict the feedback commands for the interior actuators to be localized

state feedback as described by

' ' (21)u_ = G_x_ , ul_= Gl_x_

The gain matrices Gt_ and G_ are to be designed based on the following modified sub-

structure state-space models:

I I
4o = A_,_x_ + B_m u_

(22)

Then, according to Eq. (18), set the feedback commands for joint actuators to be

(23)

= - (c/,+ =Gf,x,,
Finally, substitute this set of actuator commands in Eqs. (21) and (23) into Eq. (15)

and use the input coupling matrix to obtain a global feedback gain matrix for control

implementation on the global structure.

For the decentralized control design approach described above to be successful,

both modified substructure systems (A,_,,,B_m) and (A_m, B_m) must be controllable.

Or, at least, all the unstable poles of A_m and A_m need to be controllable so that the

modified substructure systems are stabilizable. However, this is not true. Substitution of

" J = 0 and yf_ - _bf_ = 0,the joint actuator commands in Eq. (18) into Eq. (8) gives y_J _ w_

which means that all the joint degrees-of-freedom are free of forces. Physically, the joint

actuator commands in Eq. (18) cancel out all the internal forces acting on the joint

degrees-of-freedom. The internal forces acting on the joint degrees-of-freedom are induced

by interior inputs and vibration of the substructures. Cancellation of internal forces

decouples the dynamics of the joint degrees-of-freedom from that of the interior degrees-

of-freedom. By doing so, there will be no interaction between substructures when the

two substructures are connected. The only problem is that the joint degrees-of-freedom,

even though free of forces, still can have rigid body motion. This rigid-body motions of

the joint-degrees-of-freedom are not controllable by interior actuators, since all control

forces coming from interior actuators to the joint degrees-of-freedom will be cancelled

by the joint actuator commands in Eq. (18). As a result, the substructure closed-loop
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systemsand the global structureclosed-loopsystemattain apair of unstabledoublepoles

at the origin for every joint degree-of-freedom.A simple approachto control the rigid

body motions of joint degrees-of-freedom is to introduce an augmented joint actuator

command. Details about the design of interior actuator feedback gain matrices, G_ and

G_, and the augmented joint actuator command are discussed in the following.

In physical coordinates, the modified state equation for or-substructure can be

partitioned as

{,} [- ,J]{'} [o-]x_ = An-* Aa'_ xa _,_ I (24)
• g AJI JJ d "_ Bj I uaxa am Aam xa am

in which the state vector Xa is partitioned according to Eq. (5). As discussed previously,

g Therefore, II I1Bam) athe uncontrollable state in Eq. (24) is x,. (A_m, is completely control-

lable system, presuming that the given interior actuator setting makes the substructure

controllable. We can set

{,}' a' xo [c" 0] (25)Ua "-" = j
X a

with G_ z to be designed based on the subsystem xa"I = /ta,,,xa_ili + Da,,,u_,.,-,IIz Any existing

state feedback design method, e.g., the LQR control theory or pole placement method,

can be used to determine G_ z. Similarly, we can set G_ = [ G_ z 0 ] and let G_ z be

designed based on _ = .,tm_xz-rlI + _z_uz.'-'Hr By doing so, the controllable poles of A_m and

I and u_. If the substructure state-space models areA_m are stabilized or controlled by u a

identified from experimental data rather than derived from finite-element models, the

system equations are in general not in physical coordinates. Then, there is no way to

tell which part of the system matrices are associated with the interior degrees-of-freedom

or with the joint degrees-of-freedom. In this case, it is necessary to use existing system

realization algorithms to separate the system equations into controllable subsystems and

uncontrollable subsystems. Then, G_ I and G_ J can be designed based on the controllable

subsystems.

To control the rigid-body motions of the joint degrees-of-freedom, an augmented

joint actuator command is introduced. Let

J J -J
U a : GaX a q- U a

where u_-aand fi_ are the augmented joint inputs. Substitution of the above into Eq. (8)

yields

_j ( jj)-I j (jj)-I ..ju a = D Ya - D,_ w a
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We can set the augmentedjoint inputs to be

[tt a -- {J}Wa F-_jj j

W_ } _ _j X_

(27)

where [2_ifl,] and [fl_] are diagonal matrices with the design parameters _, and fli,

i = 1,2,...,no, on the diagonal. Then, the closed-loop equations for joint degrees-of-

freedom become

wa +

+ + =0
which show that the closed-loop poles associated with joint degrees-of-freedom are stable

poles located at -(ifli + -j_21x/l--Z-'_, i = 1,2,... ,no. The augmented joint actuator

input commands in Eq. (27) can also be written as

{'}UJ [0 O dd ] X_ -jt_ "-- d _- e,_ X a
Xct

(2s)

It is necessary to show that the introduction of augmented joint actuator commands

does not affect stability of the closed-loop system. In physical coordinates, the modified

a-substructure state equation (i.e., _,_ = A,,, x,,+B_,,, u_) including the augmented joint

input takes the form

{'}
W a

"I
Wet
...

.J
W a

..J

W a

0 I ! 0 0

X X i X X
°., ,, • ...... •

0 0 i 0 I

0 0 i 0 0

ao,m

{'}
W a

"I
Wa
, . ,

J
w a

.j
w a

xa

0

X

4- ° ° °

0

0

+ B_,,,

I
uc_ +

-j

0

X

°. •

0

X

BJI -J
_a + Ua

(29)

in which x denotes those partitions that are in general not zero. The above form is

obtained from identifying nonzero terms in the open-loop A_, B_, B_, and C_ matrices

(in physical coordinates) and by using the definitions in Eq. (20). Equation (29) clearly
I

shows that the joint degrees-of-freedom are not controllable by the interior actuators, u_.

It also shows that the augmented joint input, u_,-J given in Eq. (27) will not affect stability
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of the closed-loopsystem,becauseof the zerosin the lower-left quarter of Aom matrix.

The closed-loop system poles are the union of eigenvalues of (A_ + Bt_Gt_) and the

dosed-loop poles associated with joint degrees-of-freedom, i.e., -cirri 4- -j_iV/1 - ¢i2,

i = 1,2,...,nc. However, Eq. (29) also shows that dynamics of the interior degrees-of-

freedom are affected by the joint degrees-of-freedom, because of the nonzeros in the upper-

right quarter of Aom matrix and the nonzero in the upper part of the B_a. This interaction,

although does not affect stability, can degrade the closed-loop system performance. In

order to achieve satisfactory closed-loop performance, the design parameters _i and fti

should be assigned such that vibration of joint degrees-of-freedom decays much faster

than that of interior degrees-of-freedom.

In summary, the procedure for designing decentralized controller gain matrix con-

sists of three steps. First, the feedback commands for interior actuators are set to be

I I II
u o=G ox,_-- [ G,, 0 ]xoandu_=G_x_- [ G_" 0 ]x_withG_ tandG_ _'designed

based on xo"t = ActmXo--lII + Z_mUo,',ttt and [c1_= ¢i#mxz-ttt + z_Z,,,uz.'-'ttt Second, the feedback com-

J + ¢ )xo andu3 (C3+ e3)x ,mands for the joint actuators are set to be u o = =

where G J and G_ are defined in Eq. (23) and GJ and (_ are defined in Eqs. (27) and

(28). This set of feedback commands can be expressed by one equation:

u_ Go 0
J J -J

u_ Go + Go 0 zo
= - or fi = G& (30)

0 ok

Finally, after the two substructures are connected together, a global control gain matrix

for the global (or assembled) structure can be obtained by substituting Eq. (30) into

Eq. (15). The result is

u = T,fi= T,&_ - G& (31)

The closed-loop poles associated with the joint degrees-of-freedom are not changed by

the interconnection of substructures. This is proved by substituting U g J= u o + u_ into

Eq. (9), which yields yJ _ tb J = -[2_if/i ]tb J- [f_ ]w J. The set of feedback commands

derived in this section will be called the Joint Decoupling Actuator Commands, because

they decouple the joints from the interior degrees-of-freedom.

IV. Tim Design of Decentralized Observers

In most practical situations, the number of sensors is limited and thus the full mea-

surement of the states is not available. In order to implement state feedback control, an

13



observer is required to reconstruct the entire system state. In this section, the procedure

for designing decentralized observers is presented.

The derivation is again based on the coupled substructure state-space model in

Eq. (10), whose short notation expression is given by Eq. (11). Let the observer be

described by

q= __+ _a - p (_- _ - ha) (32)

where 4--{ qa}q_ is the observer state vector with q_ estimates xa and q_ estimates x_,

respectively. F is the observer gain matrix to be designed. According to Eq. (30), state

feedback using estimated states is done by setting

= 04 =

a'_ o
a_ + o_ o

o c_+o_
o c_

{q_ } (33)
q_

Substituting Eq. (33) into the observer equation (32) and performing algebraic manipu-

lation, we get

il,_ A_,,,, + B_,,,G,_ 0 q,_ B,_S D a _ts
= I I + d -1 dd

iI_ 0 Aa_ + Ba,nG _ q_ [ B_S D o j

+?
C_,. + nn c,_

0

0

0

_ _" _a | _'Y_ (34)

q° _ _" _a I, fia_
"{- F}JJ_-I I3JJ [

qa _a _" _a | iYf_

H Z DzsC-lnas I [.y_C_ m + Dam Ga a '-' _-'a )

where fiJ = ((_Jq_ + (_f_qa) and

cL, = c_'- o_"(by)-' C_ , D_ = D_'- D_ J (D_a) -' D_ 1

, D_ "- DIJ - D_ J (Dff)-' D_ I

(35)

The above matrices in addition to the As,,, Aa_, B_, and B_,_ matrices given in Eq. (20)

completely define the modified substructure state-space models.

Equation (34) indicates that a decentralized observer design can be achieved by

appropriate choice of observer gain matrix. First, restrict the observer gain matrix F to

take the form

0 0]0 0 Fg F_ (36)

14



which is similar to the form of the controller gain matrix (_ in Eq. (30). Then, set the

joint output observer gain matrices to be

=_ +
l;'l l)lJ'_=_

(37)

Substitution of Eqs. (36) and (37) into the observer equation (34) gives

r I I I FIDU(Tz'_ I I J J

it_ = (A_. + I I I I _I I-}II ¢_I_ I I

(38)

Or, in short notation,

dlo = E_qo-[ F_ F J ]y_, (39)

@ = Sa qa - [ F_ F d ] yz

where the definitions of Ea and Eft are obvious. Therefore, by restricting the observer gain

matrix to have a decentralized form as in Eq. (36) and by setting the joint output observer

gain matrices as in Eq. (37), the observer equation is decoupled. The interior output

observer gain matrices F_ and F_ still need to be designed. Define a state estimation

error vector as

__-- _=
e_ x_ - q_

Then, after algebraic manipulations, subtraction of the coupled substructure state equa-

tion (11) from the observer equation (32) yields

_,_ = A_,,,,e,_ + F_C_,,,e,_ (41)

_/3 = Aa,_ e_ + F_ C_,_ ez

The above error dynamic equation is decoupled. Any existing pole placement

algorithm can be used to determine F_ and FJ. In order for the state reconstruction to

be effective for feedback, F_ and FJ should be designed such that eigenvalues of (A,m +

F_C,,_) and (Ao_ + F/_C_m) are further to the left in the complex plane than the regulator
I1 II

poles, which, as mentioned previously, are the union of eigenvalues of (A_+B,,,,G,_) and

nll _u_ and the closed-loop poles associated with joint degrees-of-freedom, i.e.,(A_ + .-._,_._._ ,

-(_ni 4- j_iv/1 -(_, i = 1,2,... ,n_. Of course, we have made an assumption that both

C,,n) and (a_m, C_,_) are completely observable. This assumption is by no means(A,_,_, 1

a restriction. In practice, it is usually possible to arrange locations of interior sensors

to meet this assumption. Observability of the modified substructure state-space models

and optimization of substructure interior sensor locations are future research topics.
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Although the derivation so far has been based on a two-component structure,

extension of the method to multi-component structure is straightforward. The controller

formed by the substructure observers and the Joint Decoupling Actuator Commands will

be called the Joint Decoupling Controller. In summary, the design procedure for Joint

Decoupling Controllers can be described by the following steps.

(1) Determine substructure state-space models

y_ = Cj x,+ D,JI u,}
D_J JU s

s = a, fl,%...

from finite-element modeling or from system identification of the substructures.

(2) Derive the modified substructure state-space models

Ik, = As,, x, + Bs_ u s

I
y_ = C,I,,, x s + D, '/Us

s = a, fl,%...

by using Eqs. (20) and (35).

(3) Design substructure control gains:

• I(a) Design G_ it based on the modified substructure subsystem x_ = A,I_ x s +

Bsllm usl and then, form G / = [ GIgI 0 ].

= - DJI(;'.I_Cb_so_c_ (oi_)-' (c,_+_, _,,.
Choose appropriate values of (i and f_i for joint degrees-of-freedom and then,

form Of - [0 0 JJ ], where Of J = (D[J)-'[ -[f_] -[2(il_i] ].

.t GsI q,, J (Gf + Of) q,.(c) Set u s= u, =

(4) Design substructure observers:

(d) Design F] based on (A,,,,, lG'm).

(o)so_p,_= -(B_ +F:_;_)(_)-'.
(f) Form substructure observer equation:

I I ! I I II I I J
(h = (As,.,, + Bs,,,G, + F_C,,, , + F;Ds,.,,Gs) qs-Fr, y,-F_y s
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(5) From global feedbackgain matrix for the global structure by using the input cou-

pling matrix Tt, i.e., using the relation u = Tiff (see Eqs. (30) and (31)).

It is emphasized that although the substructure control gain matrices need to be as-

sembled (Step (5)) for implementation on the global (or assembled) structure, there is

no need to assemble the substructure observers. In fact, we leave the substructure ob-

servers unassembled so that the control implementation is decentralized. However, it

should be pointed out that in actual implementation, y_ and y_ in the substructure

observer equations (38) are replaced by yS, since, according to compatibility condition,

y_ = y_ = yJ. The closed-loop system of the two-component structure, obtained by

combining the global structure state-space model in Eq. (12), the feedback law given in

Eq. (33), and the substructure observers in Eq. (39), and by using the input and output

coupling matrices, is given by

& BT, G

wher_ [_° 0]0 E_ "
The above derivation for the substructure observers is based on the "coupled"

state-space model in Eq. (10). Therefore, as shown in the derivation the collection of

substructure observers together with the global feedback gain matrix (i.e., T1G) form

a stabilizing controller for the global structure. However, it is easy to show that each

individual substructure observer together with substructure feedback gain matrix also

constitute a stabilizing controller for corresponding individual substructures. To be more

precise, define a-substructure control gain and observer gain matrices to be

G_- j -j F_-[ F_ Ff] (43)
G_ + G_

Then, by combining the "unconnected" a-substructure model in Eq. (1), the a-observer
I I J J -J

in Eq. (38a) and the feedback law u_ = Go q_ and u,_ = (G,_ +G,_)q_,, we get the following

closed-loop equation

ilo -FoCo Eo - F,_D,_G_, q,_

Using the state estimation error vector defined previously, tile above equation can be

converted to

B,_mG_ + B_,G,_ -B_G_, x,_ (45)
_,_ = 0 A.,., + i iF_C,_,_ e_
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which obviously is a stable system. The closed-loop poles are the same as those of the

c_-substructure when it is connected to _. Therefore, substructure's closed-loop poles

are the same before and after the connection. Besides that, each substructure's closed-

loop response is affected by the connection only to a slight degree. If exact states are

available for feedback (which implies the case of full state measurement), any pair of

connecting joint degrees-of-freedom will have the same response before and after con-

nection, providing that before connection the initial conditions of separate joints are the

same. Consequently, each substructure's closed-loop responses is the same whether the

substructures are connected or not. When estimate state is used for feedback, because

the joint degrees-of-freedom are set to have fast decaying dynamics, the responses of

interior degrees-of-freedom will be affected by the interconnection only slightly. This

feature makes the proposed Joint Decoupling Controllers attractive for active control of

space structures that are required to be connected and disconnected on a routine basis.

No controller redesign or controller shut-off-and-turn-on is necessary before, during, and

after the entire connecting process.

If the dimensions of substructures are still too large for control design purposes,

model reduction can be performed to substructure state-space models. Then, a low-

order Joint Decoupling Controller can be designed for each substructure based on the

reduced-order substructure model. It certainly is easier to perform model reduction at the

substructure level than at the global structure level. Although model reduction introduces

the so-called "spillover" problem, the closed-loop system of the global structure is stable

as long as all the substructure closed-loop systems are stable.

V. Examples

A. A Mass-Spring-Damper Example

The first example is the two-component mass-spring-damper system shown in

Fig. 2. The two substructures a and _ are to be connected by using the rigid links

on mass (4) and mass (5). Displacement coordinates of the global structure and the

two substructures are designated by wl, w_i, and w_i, respectively. The outputs of the

s-substructure are: y_/ = wal and y_ = ff_4. The outputs of the _-substructure are:

y_ = wz3 and y_ = W_l. All the inputs are forces.

The method in this paper is used to design state feedback gain matrix for the

two substructures. Then, the substructure state feedback gain matrices are assembled to

form a global state feedback gain matrix for the global structure. The local feedback gain
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Figure 2: A mass-spring-damper example.

matrix G_ t and G_ I for the interior actuators are determined by solving the following

optimization problems:

l xTf_lI I I T I
x,_) _ :% + p(u_) u_ dt

I xT,_lI I

subj. to -t --// t ,-,// /Xcr -- J4-amX _ "4- IJczrn ttc_

subj. to &_ AII I r')lI I= t't_rnX _ Jr Damit/3

The regulation cost weighting matrices were chosen to be

0 M I1 ' 0 M_ I

such that the first terms in the integrals represent the sum of strain energy and kinetic

energy corresponding to the interior degrees-of-freedom of the substructures. The control

cost weight parameter p was set to be 0.1. The design parameters for the augmented joint

actuator commands were chosen to be Q2 = 25 and 2(Q = 8 such that the closed-loop

poles corresponding to the joint degree-of-freedom are -4 + j3. For each substructure,

an observer is also designed according to the proposed decentralized observer design

procedure. The observer gain matrices are determined by using a pole placement method

such that observer poles are 12 units to the left of regulator poles in the complex plane.
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The results are summarizedin Tables1 and 2 and Figs. 4 through 7. Table 1 lists

the control gain and observergain matrices of each substructure. The global control

gain matrix for the global structure is simply an assemblageof substructure control gain
matrices. Table 2 lists the closed-loopsystempoles. It is seenthat eachsubstructurehas

a pair of regulator poles-4 4- j3 associated with the joint degree-of-freedom. The global

structure regulator poles are the union of substructure regulator poles, except that one

pair of -4 -4-j3 are missing because the substructure joints have been connected to form

the global structure. The substructure observer poles are equal to regulator poles minus

12 as the design specification required. The global structure observer poles are the union

of substructure observer poles.

Assume the global structure is impacted by a unit impulse force on the joint degree-

of-freedom at time zero. This impact force gives the joint degree-of-freedom an initial

velocity of magnitude 2.5. Thus, the initial state of the substructure is given by x0 =

[0, 0, 0, 0, 0, 0, 0, 0, 0, 2.5, 0, 0]. In practical situations, the initial state is unknown. There-

fore, the initial state of the observer is set to be zero, i.e., q0 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

Based on these initial conditions, the global structure open-loop and closed-loop displace-

ment response histories at wl, w2, and w3 degrees-of-freedom are calculated and shown

in Fig. 4 and Fig. 5, respectively. It is seen the proposed Joint Decoupling Controllers

successfully suppressed the vibration of the structure. In Section IV, we mentioned that

the Joint Decoupling Controllers also operate well at individual substructure level. This

is demonstrated by Figs. 6 and 7. Figure 6 shows the closed-loop response histories of

the a-substructure (for the same initial conditions) when it is disconnected from the

E-substructure. Figure 7 compares in an expanded axis scale the closed-loop response

of DOF1 of the global structure and the closed-loop response of DOF1 of the "discon-

nected" a-substructure. It is evident that the system response is only slightly affected

by the interconnection of substructures.

B. A Three-Truss Structure Example

The second example is the two-dimensional three-truss structure shown in Fig. 3.

The three truss components are to be connected at the joints, at which there are collo-

cated actuators and accelerometers. Each substructure has two interior actuators located

at arrows designated with "a". The initial conditions is induced by an impact force of

magnitude 1000 applied at the lower-right corner of a in the x-direction.

A set of Joint Decoupling Actuator Commands are designed by using the pro-

posed procedure. The interior actuator gain matrices are determined by the LQR theory

following the formulation in the Mass-spring-damper Example. The augmented joint ac-
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Figure 3: A three-truss structure example

tuator commands are also set to be such that all joint degrees-of-freedom have the same

closed-loop poles: -4 + j3. Observer design is not included in this example because pole

placement calculation exceeded computer capacity. (All the computations were done on

a Macintosch IIci computer using MATLAB software.) Therefore, exact state feedback

is used.

The design results are shown in Figs. 8 through 11. Open-loop displacement re-

sponse at the lower-right corner of a-substructure in the x-direction is shown in Fig. 8.

The open-loop response diverges because the system has rigid-body motion. Figure 9

shows the closed-loop displacement response histories at the lower-right corner of a-

substructure. Figure l0 shows the closed-loop displacement histories at the lower-left

corner of fl-substructure. Note that the responses in Fig. 10 is of order 10 -2, which is

1/100 of the responses in Fig. 9. Evidently, the vibration of fl-substructure is suppressed

by its own interior actuator inputs and is not affected by the vibration of a-substructure,

because the interaction between a and fl is eliminated. Figure 11 shows the closed-loop

displacement responses of the left joint degrees-of-freedom. Note that the joint responses

have magnitudes of order 10 -3 and are suppressed in very short time. Responses of the

-),-substructure are similar and therefore are omitted.

All the closed-loop responses were calculated by using the closed-loop equation of

the global structure. Closed-loop responses of each "unconnected" individual substruc-

ture for the same given initial conditions were also calculated. They turned out to be

exactly the same as the closed-loop responses included here. As discussed at the end

of Section IV, each substructure's response is the same whether the substructures are
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connected or not, if exact state feedback is used. This example also demonstrates the

computational efficiency of the proposed decentralizd design method. The global struc-

ture has 56 DOFs (112 states). A centralized design approach will involve solving a

Riccati equation of order 112. By dividing the global structure into three-components -

one component has 32 DOFs, two components have 16 DOFs - the size of the control

design problem is significantly reduced.

VI. Concluding Remarks

A substructure-based control design procedure using the idea of Joint Decoupling

has been developed for decentralized control of large complex flexible structures. The

method assumes there are collocated actuators and sensors at every joint degree-of-

freedom. Conditions of compatibility and equilibrium at the interface between sub-

structures are used to derive a coupled substructure state-space model for the structure

to be controlled, which leads to modified substructure state-space models to be used

as decentralized design basis. The design concept is summarized as follows. The con-

trol commands for interior actuators of each substructure are chosen to be localized state

feedback. Then, the joint actuator commands are set to cancel out all the forces acting on

the joint degrees-of-freedom, so that interactions between substructures are eliminated.

Finally, a set of augmented commands are added to the joint actuators to stabilize the

joint degrees-of-freedom. The advantages of the proposed method are: (1) the design

process is completely decentralized, (2) the controllers can function at both individual

substructure and global structure levels, and (3) a large scale control design problem is di-

vided into several small scale subproblems. A six-degree-of-freedom mass-spring-damper

system and a three-truss structure are used to demonstrate the proposed method. It

shows that the proposed controller successfully suppresses the vibration of the individual

substructure as well as the vibration of the global structure.
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Table 1: State feedback gain matrices obtained from decentralized control design.

G_ =[ 6.6628 -9.2741 2.7544 0.1350 -2.9039 -2.1168 0 0]

C_Y--[0 0 -3 0 0 0 3 0]

G_J=[0 0 0 0 0 0 5 1.6]

F_=-[ 0.0001 0.0200 0.2841 1.4080 0.0056 0.3446 1.9427 2.7322 IT(106)

F_--[O 0 0 0 0 0 0 -1] T

Substructure fl: G_ = Gg + Gg

G_ = [3.9610 -7.7589 -1.5642 -2.2097 0 0]

Gg= [o -6 0 -0.05 6 o.o51
_=[5 1.6 o o o o]

F_=-[ 1.3976 0.5154 0.0091 3.8874 5.2230 0.3449 ]T(104)

F_=[0 0 0 -1 0 01T

global structure: G =

a'_ o

o G_
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Table 2: Poles of closed-loop systems.

Substructure a

Regulator Poles Observer Poles

-3.0178 4- j5.6888

-0.3371 4- j3.8531

-1.6808 + j2.0713

-4.0000 -1-j3.0000

-15.0178 4- j5.6888

-12.3371 4- j3.8531

-13.6808 4- j2.0713

-16.0000 + j3.0000

Substructure/3

Regulator Poles

-4.4318 4- j7.1943

-1.2173 4- j2.7689

-4.0000 ::h j3.0000

Observer Poles

-16.4318 4- j7.1943

-13.2173 + j2.7689

-16.0000 4- j3.0000

global structure

Regulator Poles

-3.0178 4- j5.6888

-0.3371 4- j3.8531

-1.6808 4- j2.0713

-4.4318 4- j7.1943

-1.2173 4- j2.7689

-4.0000 4- j3.0000

Observer Poles

-15.0178 4- j5.6888

-12.3371 4- j3.8531

-13.6808 4- j2.0713

-16.4318 4- j7.1943

-13.2173 4- j2.7689

-16.0000 4- j3.0000

-16.0000 4- j3.0000
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